Seek and Destroy


Eric Schlosser joins us to discuss his nonfiction book, Command and Control: Nuclear Weapons, the Damascus Accident and the Illusion of Safety. Schlosser is in town for the Chicago Humanities Festival and will be at UIC Forum on Saturday, Nov. 8.

Read an excerpt from the book.

Thanks to our sponsors:

View all sponsors

Not Good

On September 18, 1980, at about six thirty in the evening, Senior Airman David F. Powell and Airman Jeffrey L. Plumb walked into the silo at Launch Complex 374-7, a few miles north of Damascus, Arkansas. They were planning to do a routine maintenance procedure on a Titan II missile. They’d spent countless hours underground at complexes like this one. But no matter how many times they entered the silo, the Titan II always looked impressive. It was the largest intercontinental ballistic missile ever built by the United States: 10 feet in diameter and 103 feet tall, roughly the height of a nine-story building. It had an aluminum skin with a matte finish and U.S. AIR FORCE painted in big letters down the side. The nose cone on top of the Titan II was deep black, and inside it sat a W-53 thermonuclear warhead, the most powerful weapon ever carried by an American missile. The warhead had a yield of 9 megatons—about three times the explosive force of all the bombs dropped during the Second World War, including both atomic bombs.

Day or night, winter or spring, the silo always felt the same. It was eerily quiet, and mercury vapor lights on the walls bathed the missile in a bright white glow. When you opened the door on a lower level and stepped into the launch duct, the Titan II loomed above you like an immense black-tipped silver bullet, loaded in a concrete gun barrel, primed, cocked, ready to go, and pointed at the sky.

The missile was designed to launch within a minute and hit a target as far as six thousand miles away. In order to do that, the Titan II relied upon a pair of liquid propellants—a rocket fuel and an oxidizer—that were “hypergolic.” The moment they came into contact with each other, they’d instantly and forcefully ignite. The missile had two stages, and inside both of them, an oxidizer tank rested on top of a fuel tank, with pipes leading down to an engine. Stage 1, which extended about seventy feet upward from the bottom of the missile, contained about 85,000 pounds of fuel and 163,000 pounds of oxidizer. Stage 2, the upper section where the warhead sat, was smaller and held about one fourth of those amounts. If the missile were launched, fuel and oxidizer would flow through the stage 1 pipes, mix inside the combustion chambers of the engine, catch on fire, emit hot gases, and send almost half a million pounds of thrust through the supersonic convergent-divergent nozzles beneath it. Within a few minutes, the Titan II would be fifty miles off the ground.

The two propellants were extremely efficient—and extremely dangerous. The fuel, Aerozine-50, could spontaneously ignite when it came into contact with everyday things like wool, rags, or rust. As a liquid, Aerozine-50 was clear and colorless. As a vapor, it reacted with the water and the oxygen in the air and became a whitish cloud with a fishy smell. This fuel vapor could be explosive in proportions as low as 2 percent. Inhaling it could cause breathing difficulties, a reduced heart rate, vomiting, convulsions, tremors, and death. The fuel was also highly carcinogenic and easily absorbed through the skin.

The missile’s oxidizer, nitrogen tetroxide, was even more hazardous. Under federal law, it was classified as a “Poison A,” the most deadly category of man-made chemicals. In its liquid form, the oxidizer was a translucent, yellowy brown. Although not as flammable as the fuel, it could spontaneously ignite if it touched leather, paper, cloth, or wood. And its boiling point was only 70 degrees Fahrenheit. At temperatures any higher, the liquid oxidizer boiled into a reddish brown vapor that smelled like ammonia. Contact with water turned the vapor into a corrosive acid that could react with the moisture in a person’s eyes or skin and cause severe burns. When inhaled, the oxidizer could destroy tissue in the upper respiratory system and the lungs. The damage might not be felt immediately. Six to twelve hours after being inhaled, the stuff could suddenly cause headaches, dizziness, difficulty breathing, pneumonia, and pulmonary edema leading to death.

Powell and Plumb were missile repairmen. They belonged to Propellant Transfer System (PTS) Team A of the 308th Strategic Missile Wing, whose headquarters was about an hour or so away at Little Rock Air Force Base. They’d been called to the site that day because a warning light had signaled that pressure was low in the stage 2 oxidizer tank. If the pressure fell too low, the oxidizer wouldn’t flow smoothly to the engine. A “low light” could mean a serious problem—a rupture, a leak. But it was far more likely that a slight change in temperature had lowered the pressure inside the tank. Air-conditioning units in the silo were supposed to keep the missile cooled to about 60 degrees. If Powell and Plum didn’t find any leaks, they’d simply unscrew the cap on the oxidizer tank and add more nitrogen gas. The nitrogen maintained a steady pressure on the liquid inside, pushing downward. It was a simple, mundane task, like putting air in your tires before a long drive.

Powell had served on a PTS team for almost three years and knew the hazards of the Titan II. During his first visit to a launch complex, an oxidizer leak created a toxic cloud that shut down operations for three days. He was twenty-one years old, a proud “hillbilly” from rural Kentucky who loved the job and planned to reenlist at the end of the year.

Plumb had been with the 308th for just nine months. He wasn’t qualified to do this sort of missile maintenance or to handle these propellants. Accompanying Powell and watching everything that Powell did was considered Plumb’s “OJT,” his on-the-job training. Plumb was nineteen, raised in suburban Detroit.

Although an oxidizer low light wasn’t unusual, Air Force technical orders required that both men wear Category I protective gear when entering the silo to investigate it. “Going Category I” meant getting into a Rocket Fuel Handler’s Clothing Outfit (RFHCO)—an airtight, liquidproof, vaporproof, fire-resistant combination of gear designed to protect them from the oxidizer and the fuel. The men called it a “ref-co.” A RFHCO looked like a space suit from an early-1960s science fiction movie. It had a white detachable bubble helmet with a voice-actuated radio and a transparent Plexiglas face screen. The suit was off white, with a long zipper extending from the top of the left shoulder, across the torso, to the right knee. You stepped into the RFHCO and wore long johns underneath it. The black vinyl gloves and boots weren’t attached, so the RFHCO had roll-down cuffs at the wrists and the ankles to maintain a tight seal. The suit weighed about twenty-two pounds. The RFHCO backpack weighed an additional thirty-five and carried about an hour’s worth of air. The outfit was heavy and cumbersome. It could be hot, sticky, and uncomfortable, especially when worn outside the air-conditioned silo. But it could also save your life.

The stage 2 oxidizer pressure cap was about two thirds of the way up the missile. In order to reach it, Powell and Plumb had to walk across a retractable steel platform that extended from the silo wall. The tall, hollow cylinder in which the Titan II stood was enclosed by another concrete cylinder with nine interior levels, housing equipment. Level 1 was near the top of the missile; level 9 about twenty feet beneath the missile. The steel work platforms folded down from the walls hydraulically. Each one had a stiff rubber edge to prevent the Titan II from getting scratched, while keeping the gap between the platform and the missile as narrow as possible.

The airmen entered the launch duct at level 2. Far above their heads was a concrete silo door. It was supposed to protect the missile from the wind and the rain and the effects of a nuclear weapon detonating nearby. The door weighed 740 tons. Far below the men, beneath the Titan II, a concrete flame deflector shaped like a W was installed to guide the hot gases downward at launch, then upward through exhaust vents and out of the silo. The missile stood on a thrust mount, a steel ring at level 7 that weighed about 26,000 pounds. The thrust mount was attached to the walls by large springs, so that the Titan II could ride out a nuclear attack, bounce instead of break, and then take off.

In addition to the W-53 warhead and a few hundred thousand pounds of propellants, many other things in the silo could detonate. Electroexplosive devices were used after ignition to free the missile from the thrust mount, separate stage 2 from stage 1, release the nose cone. The missile also housed numerous small rocket engines with flammable solid fuel to adjust the pitch and the roll of the warhead midflight. The Titan II launch complex had been carefully designed to minimize the risk of having so many flammables and explosives within it. Fire detectors, fire suppression systems, toxic vapor detectors, and decontamination showers were scattered throughout the nine levels of the silo. These safety devices were bolstered by strict safety rules.

Whenever a PTS team member put on a RFHCO, he had to be accompanied by someone else in a RFHCO, with two other people waiting as backup, ready to put on their suits. Every Category I task had to be performed according to a standardized checklist, which the team chief usually read aloud over the radio communications network. There was one way to do everything—and only one way. Technical Order 21M-LGM25C-2-12, Figure 2-18, told Powell and Plumb exactly what to do as they stood on the platform near the missile.

“Step four,” the PTS team chief said over the radio. “Remove airborne disconnect pressure cap.”

“Roger,” Powell replied.

“Caution. When complying with step four, do not exceed one hundred sixty foot-pounds of torque. Overtorquing may result in damage to the missile skin.”

“Roger.”

As Powell used a socket wrench to unscrew the pressure cap, the socket fell off. It struck the platform and bounced. Powell grabbed for it but missed.

Plumb watched the nine-pound socket slip through the narrow gap between the platform and the missile, fall about seventy feet, hit the thrust mount, and then ricochet off the Titan II. It seemed to happen in slow motion. A moment later, fuel sprayed from a hole in the missile like water from a garden hose.

“Oh man,” Plumb thought. “This is not good.”

From Command and Control by Eric Schlosser. Reprinted by arrangement with The Penguin Press, a member of Penguin Group (USA) LLC, A Penguin Random House Company. Copyright © Eric Schlosser, 2013.

Thanks to our sponsors:

View all sponsors

Thanks to our sponsors:

View all sponsors